610. The Possibility of Geometrical Isomerism among the 1-Aryl-3: 3-dimethyltriazens.

By Raymond J. W. Le Fèvre and Thomas H. Liddicoet.

The dipole moments and ultra-violet absorption spectra of about a dozen 1-aryl-3 : 3-dimethyltriazens have been determined. The known forms of these substances appear to possess trans-configurations about the $-\mathrm{N}=\mathrm{N}$ group. The mesomeric polarisations run parallel to those noted in the literature for dimethylaniline and its derivatives. Exposure to sunlight causes mainly photodecomposition but, beneath the dielectric constant and spectrometric evidence of this, slight indications are observable which resemble phenomena shown by other azo-derivatives and which would not be inconsistent with the occurrence of a reversible trans \rightleftharpoons cis change.
According to Hantzsch's views regarding the stereostructure of the azo-group, cis-transisomers should exist among the diazo-carboxyamides ($\mathrm{R} \cdot \mathrm{N}: \mathrm{N} \cdot \mathrm{CO} \cdot \mathrm{NH}_{2}$), the triazens $\left(\mathrm{R} \cdot \mathrm{N}: \mathrm{N} \cdot \mathrm{NHR}\right.$ and $\left.\mathrm{R} \cdot \mathrm{N}: \mathrm{N} \cdot \mathrm{NR}_{2}\right)$, the diazosulphones $\left(\mathrm{R} \cdot \mathrm{N}: \mathrm{N} \cdot \mathrm{SO}_{2} \cdot \mathrm{R}\right)$, the diazo-ethers $(R \cdot N: N \cdot O R)$, the diazo-sulphides (R•N:N•SR), etc. Despite past efforts to demonstrate such isomerism, the general conclusion seems to have been that known representatives of these classes occur only as single forms (see below; also Saunders, "The Aromatic Diazo-compounds and Their Technical Applications," 2nd Edn., E. Arnold \& Co., London, 1949, pp. 139, 192, 387,391). However, recently ($J ., 1951,1977$) new evidence has been produced which indicates that certain diazo-carboxyamides do in fact undergo geometrical inversion under the action of light, and that the process is reversed in the dark.

We now report an examination of the aryldimethyltriazens recorded in Tables I and II.
Table I.
Polarisations at infinite dilution in benzene at 25°, and apparent dipole moments of 1-aryl-3: 3-dimethyltriazens.

Ar in $\mathrm{Ar} \cdot \mathrm{N}: \mathrm{N} \cdot \mathrm{NMe}_{2}$	M_{1}	${ }^{\boldsymbol{\varepsilon} \varepsilon_{2}}$	β	${ }_{\mathrm{r}} \mathrm{P}_{\infty}$ (c.c.)	R (c.c.)	μ, D
$\mathrm{C}_{6} \mathrm{H}_{5}$	$149 \cdot 1$	4-14	0.135	160	53	$2 \cdot 28$
${ }_{-}-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$183 \cdot 6$	$5 \cdot 14$	0.254	224	58	$2 \cdot 8{ }_{5}$
$m-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	183.6	7.54	0.190	311	58	$3 \cdot 5$
$p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	183.6	9.86	0.259	387	58	$4 \cdot 0_{1}$
$p-\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	228.0	7.57	0.379	373	60	3.91
$0-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	194.1	$10 \cdot 95$	0.355	442	62	$4 \cdot 31$
$m-\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	194-1	18.8	0.223	738	59	$5 \cdot 76$
$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	194•1	$28 \cdot 1$	0.262	1075	59	$7 \cdot 0_{4}$
$p-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$163 \cdot 1$	2.75	0.092	135	57	1.95
$p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	179.1	3.53	0.205	167	59	$2 \cdot 30$
$o-\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$225 \cdot 1$	2.99	$0 \cdot 191$	189	79	$2 \cdot 3_{2}$
$p-\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$225 \cdot 1$	$3 \cdot 75$	0.215	219	79	
$\beta-\mathrm{C}_{10} \mathrm{H}_{7}$	199•1	3.63	$0 \cdot 249$	187	71	$2 \cdot 38$

Dissolved in benzene, these substances seem to suffer a slow photo-decomposition when exposed to sunlight-a conclusion supported both by dielectric constant and spectrometric determinations (see Experimental). From Table IV it will be noted that the dielectric constant is not always raised by irradiation, e.g., with the o - and the p-nitrophenyl derivative decreases of ca. 0.01 unit occur. Subsequent storage in the dark tends to cause either nosignificant change or a further increase of ε; the m-nitrophenyltriazen is an exception in that darkness slightly over-compensates the initial alteration of dielectric constant. With the oand m-nitrophenyl compounds there are also indications that re-irradiation of the " restored " (3rd Col., Table IV) solutions has, in smaller measure, qualitatively the same effect as with a fresh solution.

The data of Table IV would be understandable if irreversible destruction of solute were in varying degrees accompanied by reversible formation of a cis-isomer, i.e., (I) \rightleftharpoons (II). Unfortunately neither the relative polarities of (I) and (II) nor the directions of action of their

(I.)

(II.)

(III.)
molecular resultants can be forecast with certainty. When $X=H$ the moment of (II) should approach the magnitude of that of benzotriazole ($\mu=4.07 \mathrm{D}$. ; Jensen and Friediger, Kgl. Danske Vidensk. Selsk., 1943, 20, No. 20) or, more relevantly, that of the N-methyl derivative (III) ($\mu=4 \cdot 16$ D., present work). A rise in moment, and hence in ε_{12}, during the transformation of (I) into (II) therefore seems likely. With other groups in various positions predictions of μ_{I} and μ_{II} are impossible on present knowledge.

In the preceding remarks we have assumed that as prepared these triazens have the transconfiguration (I). Table I lists the apparent dipole moments calculable from measurements taken before exposure to sunlight.

It is clear that, for a range of groups \mathbf{X}, only forms extended as (I) should be smoothly related by polarity to the corresponding substituted dimethylanilines. Since no values for o - and m-derivatives of dimethylaniline have been reported to date (Marsden and Sutton, J., 1936, 599) we quote also values for the appropriate anilines (cf. Wesson, M.I.T. Tables, 1948) :

Substituent	H	$p-\mathrm{Me}$	${ }_{O}-\mathrm{Cl}$	$m-\mathrm{Cl}$	$p-\mathrm{Cl}$	$p-\mathrm{Br}$	$o-\mathrm{NO}_{2}$	$m-\mathrm{NO}_{2}$	$p-\mathrm{NO}_{2}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{~N}: \mathrm{N} \cdot \mathrm{NMe}_{2}$	$2 \cdot 3$	$1 \cdot 95$	$2 \cdot 85$	$3 \cdot 5$	$4 \cdot 0$	$3 \cdot 9$	$4 \cdot 3$	$5 \cdot 8$	$7 \cdot 0$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NMe}_{2}$	$1 \cdot 6$	$1 \cdot 3$	-	-	$3 \cdot 3$	$3 \cdot 4$	-	-	$6 \cdot 9$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH}_{2}$	1.5	$1 \cdot 3$	1.8	$2 \cdot 7$	$3 \cdot 3$	$3 \cdot 9$	$4 \cdot 3$	$5 \cdot 0$	$6 \cdot 3$

A satisfactory parallelism is noted, the moments of the triazens surpassing those of the amines in all cases except when an o-nitro-group is present. It is evident that the $-\mathrm{N}_{2} \cdot \mathrm{NMe}_{\mathbf{2}}$ fragment carries a component moment whose negative pole is towards the aryl nucleus and that mesomeric polarisations of the type shown in (IV) are also operative. roughly the same in the triazen as in the aniline series. The exceptional o-nitro-products have structures such that mesomerism will be sterically inhibited (compare Remington, J. Amer. Chem. Soc., 1945, 67, 1838). As information on the last point might be available from the ultra-violet spectra the prominent features of these are listed (Table II).

Table II.
Absorption maxima and inflexions.

In general, aromatic azo-compounds absorb in three regions: below 250, from 300 to 350 , and above $400 \mathrm{~m} \mu$. (cf. Cook, Jones, and Polya, J., 1939, 1315; Winkel and Siebert, Ber., 1941, 74, 675 ; Le Fèvre and Wilson, $J ., 1949,1106$; Freeman and Le Fèvre, J., 1951, 415 ; Le Fèvre and Worth, ibid., 1814). When pure, the triazens are all pale yellow, corresponding to bands in the blue end of the visible spectrum. The situation revealed by Table II is therefore unexceptional. Precedents are known for the occurrence of two maxima near $300 \mathrm{~m} \mu$., e.g., the nitrobenzenediazocyanides ($J ., 1949,1106$) are analogous to the nitro-triazens in this

Curve.	1-Substituent.	Concn., $(\text { mol. } / \mathrm{l} .) \times 10^{6} \text {. }$	Curve.	1-Substituent.	Concn., $(\text { mol. } / \mathrm{l} .) \times 10^{0}$
1	Ph	102	7	$m-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	98.4
2	$p-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$76 \cdot 2$	7	$p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	100
3	$p-\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$87 \cdot 3$	8	$o-\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	59.6
4	$p-\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	99	8	$m-\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$81 \cdot 4$
5	$p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	100	9	$o-\mathrm{Ph} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	97
6	$o-\mathrm{CO}_{2} \mathrm{H} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	88.4	9	$p-\mathrm{Ph} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	112
7	$o-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	105	10	$\beta-\mathrm{C}_{10} \mathrm{H}_{7}$	$92 \cdot 4$
Original.					

----- Exposed solution after 24 hrs. in darkness.
respect. The " K-bands" (with $\log _{10} \varepsilon$ usually $c a .4$), ascribed to general conjugation between the $-\mathrm{N}=\mathrm{N}$ - system and the aryl nuclei, commonly lie at wave-lengths longer than $300 \mathrm{~m} \mu$. Such a view applied to the present data makes interpretation possible: the " K-band " in the parent $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{~N}: \mathrm{N} \cdot \mathrm{NMe}_{2}$ is at $300 \mathrm{~m} \mu$.; as resonance increases through various p-substituents the $\lambda_{\text {max. }}$ rises, up to $360 \mathrm{~m} \mu$. for the p-nitro-derivative; where there is "steric inhibition of resonance," as with the o-chloro-, o-nitro-, and o-phenyl derivatives, the $\lambda_{\text {max. }}$ drops back, and in the last two instances falls below $300 \mathrm{~m} \mu$. The results for $o-\mathrm{CO}_{2} \mathrm{H} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~N}: \mathrm{N} \cdot \mathrm{NMe}_{2}$ appear abnormal on this simple steric basis; they can however be understood if, owing to the presence of a carboxyl group, the molecule tends to exist as an internal salt, Burawoy ($J ., 1937,1865$) having shown that the addition of a hydrogen nucleus to an azo- K-chromophore has a strong effect in displacing the corresponding K-bands to longer wave-lengths. Incidentally, Burawoy also records a spectrum of benzeneazopiperidine in hexane with a maximum at $289.5 \mathrm{~m} \mu$. $\left(\log _{10} \varepsilon=4 \cdot 20\right)$; the form of the curve is not quite symmetrical and could well be covering a minor peak or inflexion at $c a .310 \mathrm{~m} \mu$., in harmony with the triazens of Table II.

Finally, regarding the use of (III; $\mathrm{X}=\mathrm{H}$) as a rough model for the unknown cis-triazens (II), it is relevant that Macbeth and Price ($J ., 1936,111$) found 1-methylbenzo-1:2:3-triazole to absorb at $258.5(3 \cdot 79), 279 \cdot 5(3.59)$, and $291.5 \mathrm{~m} \mu .(3.45)$-the last being an inflexion. The two longer-wave bands were associated by these authors with the $\operatorname{Ar} \cdot \mathrm{N}: \mathrm{N} \cdot \mathrm{N}$ arrangement, i.e., were " K-bands." They occurred at shorter wave-lengths (and with lower intensities) than those now observed for $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{~N}: \mathrm{N} \cdot \mathrm{NMe}_{2}$ (Table II). Among azo-derivatives the change trans \rightarrow cis commonly alters the absorption at ca. $300 \mathrm{~m} \mu$. in the same sense (cf. Le Fèvre and Wilson, J., 1949, 1106). The fact that the double maximum ($285,308 \mathrm{~m} \mu$.) observed for $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{~N} \cdot \mathrm{~N} \cdot \mathrm{NMe}_{2}$ (curve 1) is not detectably shifted along the λ scale by irradiation therefore suggests-as do the ε changes (Table IV) - that the cis-content so produced is small.

From the above evidence we draw the conclusions set out in the summary. It may be recalled that a trans-configuration of the $-\mathrm{N}=\mathrm{N}$ - unit was likewise inferred for the diazoaminobenzenes examined by Le Fèvre and Vine ($J ., 1937$, 1805).

In the Experimental part we describe tests which show that, even in dry benzene, these triazens slowly interact with β-naphthol to yield azo-dyes, the process being slightly accelerated by sunlight. Previously Hauser and Breslow (J. Amer. Chem. Soc., 1941, 63, 418) had demonstrated an analogous reaction between benzeneazopiperidine and β-naphthol in dry pyridine, a medium the use of which suggested that the coupling was unusually difficult (cf. Saunders, op. cit., p. 224).

Experimental.

Solutes.-All the triazens used have been prepared by the method given by Elks and Hey ($J ., 1943$, 441). The m. p.s or b. p.s of the samples used agreed with those recorded in the literature (cf. Beilstein, "Handbuch "" der Organischen Chemie," Vol. 16, pp. 686, 705; Elks and Hey, loc. cit.; Johnson, J., 1946, 898; Hunter, J., 1937, 324) except in the cases of those recorded in the Table, which do not appear

Aryl	B. p. $/ \mathrm{mm}$. or m. p.	N, \%, Found	Formula	N, \%, Calc.
$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$	164-166 ${ }^{\circ} / 27-28$	$23 \cdot 2$	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{Cl}$	22.9
$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$	148- $151^{\circ} / 20$	$22 \cdot 6$		22.9
$o-\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	31-32 ${ }^{\circ}$ *	29.0	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{4}$	28.9
$p-\mathrm{OMe} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	174- $177^{\circ} / 29$	23.4	$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{ON}_{3}$	23.5
$o-\mathrm{Ph} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$.	143-145 $/ 1$	$18 \cdot 4$	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3}$	$18 \cdot 7$
$p-\mathrm{Ph} \cdot \mathrm{C}_{6} \mathrm{H}_{14}$	$70-71^{\circ} \dagger$	18.85	${ }_{14}{ }^{15}$	18.7

to have been described previously and, unless otherwise specified, are pale yellow oils. 1-Methylbenzo-1:2:3-triazole was obtained from benzotriazole (Ovg. Synth., 1940, 20, 16), by use of methyl sulphate (Krollpfeiffer, Rosenberg, and Mülhausen, Annalen, 1934, 515, 124). Recrystallised from ligroin it had m. p. 64°.

Dipole-moment Measurements.-These were made at 25°, with sodium-dried " crystallisable" benzene as solvent, with the apparatus and procedures noted before ($J ., 1948,1949$; 1949, 333; re symbols cf. Trans. Faraday Soc., 1950, 46, 1, and J., 1937, 1805). Details are set out, under the usual headings, in Table III. Refractivities have been directly determined in only three cases. Values shown in parentheses are derived from the figure obtained for the p-tolyl derivative, namely, $57 \cdot 4$ c.c., by noting that-since $R_{\text {Toluene }}=31 \cdot 1$ and $R_{\mathrm{H}}=1 \cdot 1$-the group $\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{~N}: \mathrm{N}-$ evidently contributes 27.4 c.c., so that the addition of 26.3 to the molecular refractions of benzene (26.2 c.c.), nitrobenzene (32.7 c.c.), chlorobenzene (31.4 c.c.), bromobenzene (34.0 c.c.), anisole (33.0 c.c.), diphenyl (52.4 c.c.), and naphthalene ($44 \cdot 5 \mathrm{c.c}$.) should give satisfactory estimates. As a check the $R_{\text {cak. }}$ for $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{~N}: \mathrm{N} \cdot \mathrm{NMe}_{2}$, viz., 52.5 c.c. may be compared with that (52.7 c.c.) obtained from $R_{\text {azobenzene }}=63.7$ c.c. (Auwers, Ber., $1938,{ }^{211}, 611$), $R_{\mathrm{H}}=1 \cdot 1$ c.c., $R_{\mathrm{C}_{6} \mathrm{H}_{6}}=26.2$ c.c., and $R_{\mathrm{Me}_{2} \mathrm{NH}}=15 \cdot 2$ (Le Fèvre and Russell, Trans. Faraday Soc., 1947, 43, 374). For the purposes of Table I, R has been taken to the nearest whole number in each case.

Table III.

1-m-Chlorophenyl-3:3-dimethyltriazen.
$\begin{array}{lllll}6,196 & 2.3180 & 0.87459 & 7.34 & 0.150\end{array}$ $\begin{array}{llllll}14,067 & 2.3830 & 0.87572 & 7.85 & 0.158 & - \\ 20,026 & 2.4250 & 0.87737 & 7.61 & 0.205 & \text { - } \\ & & \end{array}$

1-p-Bromophenyl-3:3-dimethyltriazen.

6,006	2.3191	0.87569	7.76	0.364	-
9,194	2.3422	0.87718	7.58	0.423	-
12,515	-	0.87761	-	0.350	二
14,146	2.3762	0.87851	7.33	0.383	-
18,597	2.4131	0.87989	7.56	0.376	-
21,451	2.4362	0.88091	7.63	0.380	-

(60•3)
3:3-Dimethyl-1-m-nitrophenyltriazen.

5,452	2.3754	0.87478	$18 \cdot 9$	0.210	1.4975	$56 \cdot 3$
7,316	$2 \cdot 4083$	0.87515	$18 \cdot 6$	$0 \cdot 214$	1.4979	$60 \cdot 8$
8,022	$2 \cdot 4237$	0.87534	$18 \cdot 9$	$0 \cdot 223$	-	-

$\begin{array}{lllllllll}11,591 & 2.4908 & 0.87628 & 18.8 & 0.247 & 1.4985 & 61.0\end{array}$

$$
\text { Mean }\left[R_{L}\right]_{\mathrm{D}}=59.4 \text { c.c., calc. }=59.0 \text { c.c. }
$$

3:3-Dimethyl-1-p-tolyltriazen.
$\begin{array}{llllll}3,842 & 2.2836 & 0.87408 & 2.89 & 0.089\end{array}$ $\begin{array}{lllllll}6,698 & 2.2916 & 0.87412 & 2.85 & 0.058 & 1.4978 & 59 \cdot 4\end{array}$
$\begin{array}{rllllll}9,795 & 2.2976 & 0.87465 & 2.56 & 0.102 & - & - \\ 10.498 & 58.2\end{array}$ $\begin{array}{lllllll}10,360 & 2 \cdot 3276 & 0 \cdot 87574 & 2 \cdot 74 & 0 \cdot 111 & 1 \cdot 4989 & 55 \cdot 4\end{array}$ Mean $\left[R_{L}\right]_{\text {D }}=57.4$ c.c.
1-o-Diphenylyl-3:3-dimethyltriazen.
$\begin{array}{lllllllllllllll}2,878 & 2.2810 & 0.87426 & 2.94 & 0.191 & -\end{array}$ $\begin{array}{llllll}3,010 & 2.2811 & 0.87427 & 2.86 & 0.186 & \text { - } \\ 5,254 & 2.2883 & 0.87466 & 3.02 & 0.192 & \text { - }\end{array}$ $\begin{array}{lllllll}5,491 & 2 \cdot 2928 & 0.87488 & 3.13 & 0.193 & \text { — }\end{array}$
(78.7)

$10^{6} w_{1}$	ε_{12}	$d_{12} \quad a E_{2}$	β	n_{12}	$\left[R_{L}\right]_{\text {D }}$
1-o-Chlorophenyl-3:3-dimethyltriazen.					
5,692	$2 \cdot 2917$	0.87502 5.13	$0 \cdot 249$		
11,733	$2 \cdot 3347$	0.87673 5.30	$0 \cdot 288$	-	
15,189	$2 \cdot 3486$	0.877095 .01	$0 \cdot 244$		
20,471	$2 \cdot 3772$	0.878025 .12	0.237		(57.7)
1-p-Chlorophenyl-3 : 3-dimethyltriazen.					
4,363	$2 \cdot 3158$	0.874929 .92	0.299		
8,297	2.3543	0.875529 .86	$0 \cdot 240$		
11,160	2.3824	0.876279 .85	$0 \cdot 255$		
17,000	$2 \cdot 4391$	0.877419 .80	0.244		(57.7)
3 : 3-Dimethyl-1-o-nitrophenyltriazen.					
3,664	$2 \cdot 3113$	0.8748810 .6	0.344	$1 \cdot 4974$	$60 \cdot 6$
4,309	2.3196	$0 \cdot 87506 \quad 10.9$	$0 \cdot 330$		
6,400	2.3452	0.8757711 .4	0.356	1.4984	61.5
7,685	$2 \cdot 3561$	$\begin{array}{ll}0.87633 & 10.9\end{array}$	$0 \cdot 380$	$1 \cdot 4989$	
Mean $\left[R_{L}\right]_{\mathrm{D}}=62.0$ c.c., calc. $=59.0$ c.c.					
3:3-Dimethyl-1-p-nitrophenyltriazen.					
2,570	$2 \cdot 3408$	0.87440 26.6	$0 \cdot 276$		
3,015	$2 \cdot 3584$	0.8745228 .5	$0 \cdot 281$		
4,036	2.3887	0.8748828 .8	0.312		
4,856	2.4091	0.8748928 .1	$0 \cdot 273$	-	
6,404	2.4535	0.8747228 .3	$0 \cdot 168$		(59.0)
1-p-Methoxyphenyl-3:3-dimethyltriazen.					
4,979	$2 \cdot 2900$	0.874673 .52	$0 \cdot 205$	-	
7,979	$2 \cdot 3014$	0.875313 .62	$0 \cdot 219$		
8,851	$2 \cdot 3038$	0.875373 .54	$0 \cdot 206$		
17,728	$2 \cdot 3333$	0.876723 .43	$0 \cdot 190$		(59-3)
1-p-Diphenylyl-3 : 3-dimethyltriazen.					
14,35	$2 \cdot 2779$	0.874053 .76	0.215		
5,209	$2 \cdot 2926$	0.874783 .86	$0 \cdot 220$		
6,874	$2 \cdot 2976$	0.875073 .65	0.215		
8,784	$2 \cdot 3052$	0.875383 .72	$0 \cdot 209$		(78.7)
3 : 3-Dimethyl- β-naphthyl-1-triazen.					
3,868	$2 \cdot 2866$	$0 \cdot 874673.65$	$0 \cdot 263$	-	
6,134	$2 \cdot 2950$	0.875153 .67	0.256		
7,453	2-2995	0.875313 .62	0.235	-	
10,977	2.3118	0.876093 .58	0.241)	-	(70•8)

Interactions of the Triazens with β-Naphthol.-To β-naphthol (0.5 g .) in benzene ($10 \mathrm{c} . \mathrm{c}$. of the solvent used for dipole moment determinations), approx. 0.002 mole of the triazen was added. The mixtures were divided into two portions, one kept in the dark and the other exposed to bright sunlight. Inspections at hourly intervals indicated that illumination accelerated the production of colour. This was particularly noticeable with the p-chloro-, p-bromo-, p-methyl-, and p-methoxy-derivatives, and less so with the others.

In view of the possibility (Le Fèvre and Northcott, Chem. and Ind., 1948, 543) that β-naphthol might considerably screen off from the dissolved triazen the wave-band around $300 \mathrm{~m} \mu$., three experiments were made, as checks, in which the triazen-benzene mixture was irradiated alone and the naphthol solution added only at the moment of test. However, this alternative procedure did not cause significantly different results.

By partial evaporation of five of these triazen- β-naphthol mixtures crystalline products were isolated. In colours and m. p.s these agreed with descriptions given in Beilstein ("Handbuch der Organischen Chemie,' Vol. 16, pp. 162-170) for the expected azo-compounds, $\mathrm{HO}^{\circ} \cdot \mathrm{C}_{10} \mathrm{H}_{6} \cdot \mathrm{~N}: \mathrm{N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{X}$.

The recovered materials did not depress the $\mathrm{m} . \mathrm{p} . \mathrm{s}$ of appropriate authentic specimens.
Absorption Spectra.-These were determined with the Beckman photoelectric spectrophotometer, Model DU, in 95% ethanol as a solvent. Their forms are shown in the figures. Prominent features are listed in Table II.

The Dipole Moment of 1-Methylbenzo-1:2:3-triazole.-The necessary measurements (in benzene at $\mathbf{2 5}^{\circ}$) are listed below, as under the first five headings used in Table III :

0	2.2725	0.87378	-	-
1253	2.2911	0.87409	$14 \cdot 8$	0.283
2814	2.3131	0.87451	$14 \cdot 4$	0.297
3554	2.3222	0.87484	$14 \cdot 0$	0.298
5797	2.3553	0.87528	14.3	0.294

Since mean $a \varepsilon_{2}=14.4$ and mean $\beta=0.293,{ }_{\infty} P_{1}=393$ c.c. The molecular refraction (D line) has already been determined in quinoline solution by von Auwers (Ber., 1938, 71, 604) as $38 \cdot 23$ c.c. Accordingly the apparent moment of 1 -methyl-1:2:3-benztriazole is $4 \cdot 1_{6} \mathrm{D}$.

The authors are grateful to Mrs. E. Bielski for analyses. This work has been assisted by a grant from the Commonwealth Science Fund, and has been carried out during the tenure by T. H. L. of a Rotary Foundation Fellowship.

University of Sydney, N.S.W., Australia.

